Exercise 4

In Exercises 3 and 4, find the domains of $f, g, f / g$, and g / f.

$$
f(x)=1, \quad g(x)=1+\sqrt{x}
$$

Solution

Any number can be plugged in for x to the formula for f, as it's a constant function. This means the domain of f is $(-\infty, \infty)$. g has a square root function, and only the square root of a nonnegative number can be taken.

$$
x \geq 0
$$

The domain of g is then $[0, \infty)$. The ratio f / g is

$$
\frac{f(x)}{g(x)}=\frac{1}{1+\sqrt{x}},
$$

which has a square root function and a denominator.

$$
\begin{gathered}
1+\sqrt{x} \neq 0 \quad \text { and } \quad x \geq 0 \\
\sqrt{x} \neq-1 \quad \text { and } \quad x \geq 0
\end{gathered}
$$

No real value of x satisfies the inequality on the left, so this condition can be ignored. The domain of f / g is $[0, \infty)$. The ratio g / f is

$$
\frac{g(x)}{f(x)}=\frac{1+\sqrt{x}}{1}=1+\sqrt{x} .
$$

Its domain is the same as $g:[0, \infty)$.

